skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nakileza, Bob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Tropical mountain ecosystems hold immense ecological and economic importance, yet they face disproportionate risks from shifting tropical climates. For example, present-day montane vegetation of East Africa is characterized by different plant species that grow in and are restricted to certain elevations due to environmental tolerances. As climate changes and temperature/rainfall zones move on mountains, these species must rapidly adjust their ranges or risk extinction. Paleoenvironmental records offer valuable insights into past climate and ecosystem dynamics, aiding predictions for ongoing climate change impacts. In particular, warming and wetting in tropical East Africa during the mid-Holocene resulted in both lowland and highland forest expansion. However, the relative impacts of rainfall and temperature change on montane ecosystems along with the influence of lowland forest expansion on montane communities is not completely understood. We use fossil pollen to study the vegetation changes in two lakes at different altitudes in the Rwenzori Mountains, Uganda: Lake Mahoma (Montane Forest belt) and Upper Kachope Lake (Afroalpine belt). Further, using the newly relaunched African Pollen Database and recent temperature reconstructions, we provide a regional synthesis of vegetation changes in the Rwenzori and then compare this with changes observed from other equatorial East African montane sites (particularly Mt Kenya). In the early to mid-Holocene in the Rwenzori Mountains, trees common today in lowland forests dominated, driven largely by warmer temperatures. After 4000 years ago (4ka), Afromontane forest trees along with grasses progressively replaced lowland trees. Not all sites experienced identical transitions. For instance, at Lake Rutundu on Mt Kenya at the same elevation as Lake Mahoma, bamboo expansion preceded Afromontane forest growth, likely influenced by variations in fire. Variance partitioning indicates that each site responded differently to changes in temperature and rainfall. Therefore, these site-specific ecological responses underscore the importance of considering biogeographic legacies as management strategies are developed, despite similarities in modern ecology. 
    more » « less
  3. Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial–interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report 10 Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO 2 rise at ~18.2 ka. This “early” tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes. 
    more » « less
  4. Abstract The magnitude of tropical cooling during the Last Glacial Maximum (LGM; ∼19–26.5 ka) remains controversial, with sea‐surface temperatures cooling by several degrees less than most temperatures reconstructed at high elevations. To explain this discrepancy, past studies proposed a steeper (increased) lapse rate—the temperature decrease with elevation—during the LGM relative to today. For instance, LGM temperatures in East Africa reconstructed from branched GDGTs from multiple elevations support an ∼0.9°C/km increase in the lapse rate during the LGM relative to present day. Lapse rates are a critical part of the Earth's climate sensitivity and atmospheric energy transfer, and it is vital to know whether and by how much the tropical lapse rate steepened during the LGM. Here, we simulate LGM glacier extents in the Rwenzori Mountains of Uganda with and without a change in lapse rate using a range of temperature and precipitation estimates. We find that the lapse rate must have been steeper than present for glaciers to reach their LGM positions using available sea‐level temperature and precipitation estimates for East Africa. 
    more » « less